Automatic Disaggregation of Total Electrical Load from Non-intrusive Appliance Load Monitoring

Lucio Soibelman, H. Scott Matthews, Mario Berges, Ethan Goldman

Outline

- **Motivation**
- Vision
- **Problem Definition**
- **Proposed Approach**
- **Previous Work**
- Non-intrusive Load Monitoring:
 - The hardware
 - The obtained signals
 - Event Detection
 - Event Classification
 - Results
- Conclusion

Motivation

- For the construction industry:
 - How green are green buildings?
 - Car manufacturers required to provide MPG, why different for buildings?

Motivation

- For users/owners of buildings:
 - You can not control what you do not measure
 - Grocery shopping analogy

Vision

- Energy-aware Smart Facilities
 - Aware: continuous monitoring, reporting.
 - Smart: user feedback with actionable information, able to predict, linking cause and effect: really smart.

Problem Definition

- Low feedback rate:
 - Monthly bill
 - Daily averages
- Difficult to obtain better data:
 - Hardware installation difficulties
 - Price:
 - Plug-through meters (~\$100/each)
 - Circuit-level meters (~\$3000/panel)
- Even if consumers had the data:
 - Analyzing it is cumbersome
 - Recommendations, forecasting should be automatic

Proposed Approach

- Non-intrusive load monitoring (NILM):
 - Obtain inexpensive measurements of total power consumption.
 - Use signal processing and machine learning techniques to disaggregate total load into individual appliances.
- Leverage existing infrastructure:
 - Electric circuits as communication medium between appliances and system.
 - Correlate with other sensor data: light intensity sensors, temperature, etc.
- More intelligent, less expensive solutions.

Previous Work

- NILM has been around for 20+ years.
- Very promising results in:
 - Controlled laboratory settings
 - Shipboard systems
 - Detecting large, quasi-static loads.
 - Typical residential buildings of the early 90's (no variable loads).
- One commercial product marketed for electric utilities.
- Our contributions:
 - Real world scenarios, in currently occupied buildings.
 - Interested in the applications of the disaggregated data.
 - Applying current Machine Learning techniques.

Our approach to NILM in detail...

The Hardware

- Incoming signals:
 - Aggregate Voltage and Current.
- Data Acquisition card (DAQ) converts analog to digital signals.
- Computer processes the raw waveforms and computes aggregate power metrics: real power (P), reactive power (Q), etc.
- Event detection and classification algorithms use this data.

The obtained signals

Event Detection

- Probabilistic approach
 - Generalized Likelihood Ratio

possible_event =
$$\underset{l \leq j \leq k}{\operatorname{arg\,max}} \sum_{i=j}^{k} \ln \frac{P(x_{i}^{1} \mid \mu_{after}, \sigma_{after})}{P(x_{i}^{1} \mid \mu_{before}, \sigma_{before})}$$

Currently testing wavelets

Event Classification: Feature Extraction

Event Classification: Feature Extraction

- Three methods:
 - Delta metrics: difference between pre/post average
 - Transient profile: all data-points in pre/post windows
 - Ridge Regression coefficients:
 - Polynomial basis: 1st order, no bias-term, proved best.
 - Gaussian Radial Basis Functions: 6 or 7 RBFs were enough
 - Fourier basis: 1 or 2 coef. proved best

Event Classification: Training Classifiers

- Two different setups:
 - 17 appliances in an occupied residential building (Real World)
 - 8 appliances in a laboratory (Noise Free)
- Four different classifiers:
 - Gaussian Naïve Bayes
 - 1-Nearest Neighbor
 - AdaBoost
 - Decision Trees

Event Classification: Training Classifiers

- WireSpy: a tool to support the training process.
 - Clamps around the appliance's wire.
 - Detects changes in the overall current draw.
 - Time-stamps those changes and sends this info. to the system wirelessly.
 - We obtain accurate ground truth.

Event Classification: Training Results

- k-Nearest Neighbors (kNN)
 - NF 90% (RBF Coef.), RW 81% (RBF Coef.)
- Gaussian Naïve Bayes (GNB)
 - NF 83% (Delta), RW 57% (Poly. Coef.)
- AdaBoost
 - NF 76% (Poly. Coef.), RW 0.50% (Poly. Coef.)
- Decision Trees
 - NF 85% (Delta), RW 58% (RBF Coef.)

Event Classification: Validation Results

Validation Results (Accuracy in %)		GNB	kNN, k=1	Ada Boost	DT
Noise Free	Delta	52.94	67.65	51.52	61.76
	Whole Transient	38.24	73.53		58.82
	Polynomial Coefficients	58.82	67.65	51.52	52.94
	Fourier Coefficients	64.71	79.41	2.94	64.71
	RBF Coefficients	67.65	67.65	**	64.71
Real World	Delta	47.69	73.81	36.59	42.86
	Whole Transient	9.52	73.81		47.62
	Polynomial Coefficients	61.90	80.95	61.90	57.14
	Fourier Coefficients	50.00	80.95	55.00	54.76
	RBF Coefficients	47.62	76.19	35.71	54.76

Conclusions

- Very simple metrics and algorithms have a decent performance: slope and 1-NN.
- Our algorithms maintain their performance in noisy environments (real world).
- Facilities with this kind of system can obtain a detailed report with the operational schedule of all appliances.
- Future work includes adding other existing sources of information to correlate with: environmental sensors, time of day, etc.

Video Demonstration

Questions?

lucio@andrew.cmu.edu

